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I. ISTRODGCTIOX 

As early as 1859 Joule recognized on the basis of his experiments that the 
retractive force in stretched rubber originates from thermal motions as apart 
from intermolecular attractive forces. In  the language of thermodynamics, 
the Gough-Joule effect (increase of tension in stretched rubber with tempera- 
ture, or the thermodynamically related temperature rise during adiabatic stretch- 
ing) demonstrates that the extension of rubber is accompanied by a decrease in 
entropy. More recent experimental measurements on the thermoelastic proper- 
ties of rubber (1, 15, 28, 31) have shown explicitly that this increase in entropy 
is largely responsible for the retractive forw, the change in internal energy with 
elongation being of minor importance. The problem of rubber elasticity is 
chiefly concerned, therefore, with an account of the origins of this entropy change 
accompanying deformation. 

Meyer, von Susich, and Valk6 (27) in 1932 suggested that the decrease of 
entropy with elongation is a consequence of orientation of the molecular chains 
of which rubber is composed. 3lacroscopic elongation of the specimen requires 
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Meeting of the American Chemical Society, Cleveland, Ohio, April 4, 1914. 
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microscopic elongation of the irregular chains which comprise its structure, and 
an elongated chain represents a less probable (lower entropy) state than an 
irregular chain of random configuration. Thus, the retractive force is due 
chiefly to the tendency for the rubber structure to assume a more probable 
(disoriented) state, and does not arise from attractive forces of one sort or 
another within the structure. 

At the present time the explanation of NIeyer, von Susich, and Valk6 for the 
change in entropy of rubber on stretching, and hence for the origin of the major 
component of the elastic retractive force, is almost universally accepted. The 
next problem, that of interrelating quantitatively the stress on the one hand 
with the strain and the network structure on the other, has been attacked 
by the methods of statistical mechanics. This involves evaluation of the 
available number of configurations (configurational “probability”) as a function 
of deformation. The relative number of configurations can be converted to an 
entropy change by employing the Boltzmann relationship, and the stress can 
be computed from the resulting entropy function by straightforward methods of 
thermodynamics. 

In  this paper the various methods which have been advanced for treating the 
statistics of network deformation will be compared with one another and with 
experimental results. As an extension of these treatments of rubber elasticity, 
the effects of network imperfections, such as arise from the finite molecular 
weight of the unvulcanized rubber, will be incorporated into the theory. The 
connection between swelling of rubber vulcanizates in solvents and their elastic 
properties will be discussed. 

11. NETWORK STRUCTURE O F  VULCANIZED RUBBER 

Before proceeding with a discussion of the various methods for dealing quan- 
titatively with the statistics of rubber network deformations, it is necessary to  
consider briefly the structure of vulcanized rubber. Raw (unvulcanized) rubber 
consists of very long polymeric molecules, each composed of a thousand or more 
of the structural unit C6Hs. In  the unoriented (undeformed) state these thread- 
like molecules are randomly entangled in a completely haphazard manner. 
The configuration of any individual molecule resembles the path which would 
be traced by a molecule of a gas in travelling a distance equal to the length of the 
molecule, the mean free path of the gas molecule being equal to  the length of one 
freely orienting segment of the polymer chain. From the point of view of struc- 
ture, vulcanization consists of the introduction of intermolecular cross-linkages 
a t  randomly selected points of contact between molecules. These cross-linkages 
may occur on an average of once for every two hundred or so structural units 
in a soft gum vulcanizate. Thus, each molecule will be cross-linked to other 
molecules a t  an average of five or more points, and a continuous network struc- 
ture will be developed. This network will extend throughout the piece of rubber. 
It will include very nearly all of the initial rubber molecules, inasmuch as the 
total number of cross-linkages considerably exceeds the total number of primary 
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molecules2. This is a consequence of statistical laws applied to  random cross- 
linking processes (3, 4). 

During the cross-linking process the rubber molecules lose their identities as 
individual units, being replaced by the continuous network structure mentioned 
above. The primary element of the network is the portion of a rubber molecule 
extending from one cross-linkage to  the next one encountered along the molecule. 
This structural element will be referred to  throughout this paper as a “chain.” 

Figure 1 represents an attempt to diagram a portion of the network structure, 
of necessity greatly oversimplified. The actual chains between cross-linkages 
will be much more irregular and will on the average meander through a con- 
siderably larger region of space extending beyond the junction points. Fur- 

FIG. 1. Diagrammatic representation of a portion of the network structure surrounding 
the cross-linkage P .  

thermore, other chains and cross-linkages, not immediately connected with those 
shown in the figure, will interpenetrate this same region of space. 

The configurations of the chains in the undeformed piece of rubber will conform 
to the same description as has been applied to the unvulcanized molecule of raw 
rubber. Prior to cross-linking each chain exists as an element of a molecule, 
bound at either end to other similar elements. While its attachments to its 
neighbors hinder its rate of transformation from one configuration to  another, 
they do not influence its average configurations. The chain configurations are 
completely random. Cross-linking does not disturb these configurations; i t  

*James  and Guth (19) estimate that  the proportion of vulcanized rubber which is 
actively combined with the network is small-about 25 per cent of the total. I n  addition 
to  the fact tha t  a numerical error occurs in their equations, their procedure is based on a 
hypothetical model for vulcanized rubber which bears little resemblance to the actual 
structure. 
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merely tends to fix them. Consequently, the configurations of the chains in 
undeformed vulcanized rubber are the same as would be assumed by a set of 
totally independent molecules of the same lengths as the chains. 

The cross-linkages represent fixed points in the network structure in the 
sense that a t  each of them four chains are permanently connected. A cross- 
linkage may ((diffuse” over a limited region of the space through rearrangements 
in the configurations of the associated chains. The restraint imposed by a 
cross-linkage requires that these rearrangements of the associated chains occur 
in unison in order that the chain ends shall always meet a common point. 

When the 
network is deformed these mean positions will be shifted like minute inclusions 
in a homogeneous isotropic medium. Thus, an elongation in the z direction 
with an increase in the length by the factor a! will increase the z coordinate of the 
mean position of junction A with respect to that of P by the factor a!. Coordi- 
nates in the perpendicular directions, the volume remaining constant, will be 
decreased by the factor 1/& The deformation produces a change in the 
distribution of chain (‘displacement lengths,” or distances between chain ends. 
The result is an increase in the average chain displacement length. Conse- 
quently, there is a decrease in the number of configurations available to the 
system of interconnected chains-in other words, a decrease in the configuration 
probability. Various methods for arriving a t  a quantitative estimate of this 
entropy change mill be discussed in the next section. 

Mean positions in space may be assigned to each cross-linkage. 

111. QUANTITATIVE TREATMENT O F  RUBBER ELASTICITY 

1. The chain length probability distribution 
The common basis for all of the various statistical-mechanical derivations of 

stress-strain relationships for rubber and rubber-like substances is the equation 
expressing the probability distribution of chain displacement lengths for chains 
of random configuration. Taking one end of the chain as origin of coordinates, 
the probability that the other end lies within a volume element located a t  
z, y, z, is expressed as (13, 23): 

W(x,  y, z )  dzdydz = (P3/n3’’) exp [-p2(z2 + y2 + z’)] dzdydz (1) 

where the parameter /3 depends on the length of the chain and its flexibility. 
The nature of this dependence of p on chain structure is of no consequence in 
the development of elasticity theory; only the form of equation 1 is important. 
According to equation 1 the root mean square value of the chain displacement 
length r(= 1 / 2 2  + y2 + 22) must equal 43m. 

No rigorous proof of the validity of equation 1 as applied to polymer mole- 
cules which derive their flexibility from permissible rotations about valence 
bonds of the chain has been given. However, for the case of “idealized” chains 
composed of many units joined by bonds a t  fixed angles about which there is 
free rotation, each unit possessing length but an inappreciable cross section 
(“volumeless” chains), the equation seems to be reasonably well founded (13,23). 
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Lord Rayleigh’s (32) analyses of an analogous problem, that of random flight 
in three dimensions, provides further support. Kuhn (6, 2 5 )  has shown that 
limitations on free rotation about bonds may be expected to alter p (for chains 
of given contour length) but not the form of equation 1. 

Neglect of the volume occupied by the chain introduces a more dubious ap- 
proximation. In effect, this approximation fails to exclude from consideration 
those configurations in which two (or more) units, separated some distance along 
the chain, would occupy the same element of volume. No quantitative treat- 
ment of the effect of this approximation has been carried out. It may be pre- 
sumed, however, that proper exclusion of these impossible configurations would 
alter somewhat the character of the distribution. 

Mention should also be made of the necessary deviation from equation 1 for 
large values of r ,  i.e., for r values approaching that for the fully extended chain. 
The actual distribution should halt a t  this limit, instead of approaching zero 
asymptotically as prescribed by equation 1. James and Guth (19, 20) have 
discussed this limitation a t  length, with the conclusion that a t  elongations 
above 300 per cent of the initial length the chains in representative vulcanizates 
are sufficiently extended to justify consideration of this correction. This is 
about the point a t  which crystallization sets in in natural rubber. Synthetic 
rubber pure gum vulcanizates either undergo crystallization a t  this or slightly 
higher elongations, or, lacking the ability to withstand the stress which deve- 
lops, they are ruptured a t  about this point. Since the statistical treatment of 
elasticity becomes inapplicable quantitatively when crystallization occurs, it is 
doubtful that this correction is of any great practical importance. 

In this paper we shall employ equation 1 as a reasonable approximation to the 
correct chain-length distribution function, realizing that it is neither rigorously 
proved nor quantitatively exact. To the extent that it expresses accurately the 
probability that a free molecule or chain mill possess a displacement length r, 
it must also represent the relative number of configurations available to the chain 
for a fixed displacement length r ,  since the probability of a given state is propor- 
tional to the number of configurations consistent with that state. The function 
TY will be referred to interchangeably as an expression for the probability of a 
given r value and for the relative number of configurations of a chain having the 
displacement length r. 

2. The elastic characteristics of a single chain 
m e  consider a single chain, one end of which is constrained to lie in a volume 

element about the point located a t  z, y, x with respect to the other end. Thus, 
the chain displacement length is fixed, but intervening portions of the chain are 
free to assume any configuration consistent with bond angles, steric interferences, 
etc. The configurational entropy of the single chain is given by the log of the 
number of configurations multiplied by Boltzmann’s constant L. Hence, em- 
ploying equation 1 for the relative number of configurations, there is obtained for 
the configurational entropy of a single chain, omitting an additive constant 

s = k In w = L[A - ~‘(2 + y2 + z2)I 
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where A is a constant.a The maximum entropy occurs when 

r = d x 2 +  y2 + 22 = o 
The force of retraction arising from the entropy change is 

-T (as /ar )  = 2kTp2r (3) 
i.e., the chain is a Hooke’s law spring, the tension in which is directly proportional 
to its length. 

On the basis of this result James and Guth (14, 19, 20) replace the actual 
network of interconnected chains with a hypothetical “network” composed of 
three sets of parallel springs running the full length, breadth, and thickness of 
the piece of rubber. This hypothetical set of springs, i t  is shown, should repro- 
duce the elastic properties of rubber. After taking into account the effects of 
an lLinternal pressure” on elastic properties a t  fixed volume, the following expres- 
sion is obtained for the retractive force as a function of the degree of extension C Y :  

f = 2rnkT@’[a! - l / a2 ]  (4) 
The number of parallel chains per unit cross-sectional area of James and Guth’s 
system of springs is represented by ma4 The dependence off on CY is precisely 
that found by other methods which treat the statistical mechanics of the actual 
rubber network. However, the coefficient m, expressing the number of chains 
per unit area of the hypothetical “parallel chain” model, is a fiction in terms of 
the actual network of irregular chains. The real chains occupy volume, not an 
area. Furthermore, equation 4 is dimensionally incorrect, f being expressed in 
force per unit volume. 

In  conclusion, this procedure yields a satisfactory form for the dependence of 
stress on strain (a), but it fails to connect elastic properties with network struc- 
ture.’ Thus, the important relationship obtained by other methods (c f .  seq.) 
between the elastic force of retraction and the number of chains per unit volume, 
or the directly related concentration of cross-linkages, is obliterated by the 
replacement of the network by sets of parallel chains. 

(@ has the dimensions of reciprocal length.) 

3. Statistical mechanics of the network as a whole 
A simpler and more satisfactory analysis of the elasticity problem can be 

carried out by considering the statistical mechanics of the network as a whole, 
3 It may be objected that application of the methods of statistical mechanics, and of 

thermodynamics as well, to  a system composed of only 102 to l o 3  units is unsound. While in 
the above we deal with a single chain, the actual results are to be applied to  a system 
of many chains-some 1018 per cubic centimeter. Hence, we are concerned only with the 
average characteristics of a single chain. 

4 Substituting 8 2  = 3/2 72 in equation 4 yields an expression differing from James and 
Guth’s equation 3.3 of reference 19 by a factor of three, omitted from their equation (their L 
replaces our r ) .  I n  an  earlier publication (14) the coefficient is correctly expressed as in 
equation 4 above. 

6 This is in agreement with a conclusion drawn by James and Guth in ZI comparison of 
their method with others. See page 377 of reference 19. 
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without regard for the so-called elasticity of a single chain. This is the method 
applied by Kuhn (24), Wall (37) ,  and Treloar (35) .  

The internal state of the network system can be specified in terms of the 
positions of the cross-linkages. As pointed out earlier, deformation of the 
rubber transforms the arrangement of these points, and hence alters the internal 
state of the network. Any such state can be represented by the system of vec- 
tors connecting neighboring junction points, i.e., the system of vectors each of 
which connects the two ends of a chain. If these displacement vectors are 
shifted to a common origin and the surrounding space is marked off into volume 
elements numbered 1, 2,  3 ,  etc., the number of vectors terminating in the ith 
volume element can be designated by vi. The state of the system is defined by 
assigning a value to each of the vz, subject, of course, to the condition that 
B v i  = v, where Y is the total number of chains. Each chain may assume a 
number of configurations through rearrangement of intervening portions of the 
chain, its displacement vector remaining fixed. For chains having vectors 
terminating in the ith cell, the relative number Wi of these configurations is given 
by equation 1 with x, y, z corresponding to  the coordinates of the ith cell. 

The probability P of a given state is given by the product of the probabilities, 
or relative number of configurations, for each chain. Hence, 

P = n ( W p  (5 )  
i 

This expression has been employed by Kuhn (24) and Treloar (35).6 Wall 
(37) considers that the chains are interchangeable, and includes, therefore, a 
factor for the number of combinations of a total of v vectors such that VI of them 
terminate in cell ‘‘1,” v2 in cell “2,” etc. Instead of equation 5, Wall uses the 
equation 

The assumed interchangeability of chains is inconsistent with the mutual inter- 
dependence of the chains of the network. However, the second factor in brack- 
ets in equation 5‘ is of no consequence in deformations unaccompanied by a 
change in volume. In  all such cases this factor remains unchanged, and there- 
fore does not affect the final results. 

Talung the logarithm of equation 5 and multiplying by the Boltzmann constant 
to  obtain the entropy: 

s = k vi In Wj = k  vi[^ - + y i  + 2 3 1  (6) 
i i 

6 Kuhn (24) failed to  recognize that  the restraints imposed on a chain are limited to  i ts  
ends, the intervening portions being free to  assume whatever configuration is consistent with 
the given chain displacement length. In his analysis he introduced additional restraints on 
the mid portion of the chain. Treloar (35) has corrected this error in Kuhn’s treatment and 
has presented an exact solution of the resulting equations instead of the approximate solu- 
tion limited to  very low elongations submitted by Kuhn. 
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In  the undeformed state the distribution of chain displacement lengths will be 
that given by equation 1, the cross-linkages having been introduced a t  random 
between unoriented chains. Then 

vi = vTV~ dxdydz 

If the sample is elongated in the z direction, the length being increased by the 
factor a, then, under the assumption that the relative positions of the network 
junctions change in accordance with the macroscopic dimensions of the sample, 
the z coordinate of each vector will be increased by the factor a and x and y 
will be decreased by 1/ali2, the volume remaining constant. A chain for which 
the projected distance between its ends is equal to z possessed a component equal 
to z/a before stretching. Hence to obtain the new distribution of chain lengths 
after stretching, z in equation 1 must be replaced by z/a.  Similarly, x and y 
must be replaced by zali2 and ya”’. In  place of equation 1 we have, therefore, 

W’(x, y, z )  dxdydz = (p3/a3”) exp [ -p’(ax2 + ay2 + z’/a’)] dxdydz (1’) 

Substituting vi = vW: dxdydz in equation 6 and replacing the summation by 
integrals : 

S = k v ( p ’ / ~ ~ ’ ~ )  /// exp [-$(ax’ + a y 2  + z2 /a2 ) ] [A  - p2(x2 + y2 + z’)]dxdydz 

Treloar (35) has integrated this expression, obtaining a result which becomes, 
when expressed as the entropy change in passing from the undeformed state 
a = 1 to the deformed state defined by a: 

+a 

-a 

A S  = #(a) - X(1) = -kv(a2  + 2 / a  - 3 ) / 2  (7) 
This expression was obtained previously by Wall (37) ,  employing equation 5’ 
and a different mathematical procedure.’ The entropy contribution to the 
elastic retractive force may be computed a t  once from Wall’s equation 
(equation 7) 

f = -T(aS/aL) = -T(aS/aa)/Lo = (kTv/Lo)(a - 1/a2) (8) 
where Lo is the initial length of the unstretched sample. This equation, relating 
the elastic retractive force to network structure as represented by v and to the 
deformation a, was first obtained by Wall. The tension 7 (force per unit ini- 
tial cross-sectional area) is given by either of the alternate expressions 

7 = RT(v/V)(P(a) (9) 

7 = ( R T p / N J y ( a )  (9’) 
or 

7 I n  deriving equation 7 all chains have been assumed to be of the same size, i.e., the same 
Considering the random nature of vulcanization this obviously is far from 

For a system of heterogeneous chains, this same procedure may be applied to each set 
The final result summed over all sizes of chains is precisely equa- 

contour length. 
fact. 
of chains of a given size. 
tion 7 ,  where Y is the total number of chains of all sizes. 



STRUCTURE AND PROPERTIES O F  VULCANIZED RUBBER 59 

where v is the number of chains in the volume V ,  M ,  is the molecular weight per 
chain (number average), p is the density of the rubber, and 

q(a) = a - l/d (10) 

Whereas the previous equation (4) contains the y ( a )  function, the dependence of 
the coefficient on the number of chains, or on the concentration of cross-linkages, 
does not occur therein. The simple connection between the elastic “modulus” 
and network structure provided by equations 8, 9, or 9’ is of the utmost im- 
portance. 

4. The tetrahedral model for the network structure of rubber 
An alternative procedure (7) for statistical treatment of rubber network de- 

formations can be carried out in terms of an average (‘cell’’ of the network.’ 
Instead of considering the chains as individual elements, the four chains meeting 
a t  a junction are considered mutually. The four chains radiating from each 
junction lead to four ((nearest neighbor” junctions, the average positions of which 
define a tetrahedron. One such tetrahedron is defined by the points A ,  B, C, 
and D in figure 1, considered in three dimensions. If we idealize the network 
to the extent of making all chains of the same size (same contour length), then 
the average tetrahedron, or “cell,” so defined will be a regular tetrahedron. 
It should be made clear a t  the outset that, owing to the intertwining of the 
chains, these tetrahedral cells will overlap extensively, a given element of the 
volume being encompassed by many of these elementary tetrahedra. These 
cells do not adjoin one another with the regularity and volume-filling character 
of the unit cells of a diamond lattice, for example. 

The existence 
of this cell as a unit of the network structure rests entirely upon the requirement 
that four chains extending from the corners ( A ,  B, C, and 0) shall meet within a 
volume element AT a t  some point P. The relative number of configurations 
available to the system of four chains which meet within a particular volume 
element AT is given by the product of four “probabilities” for the individual 
chains 

The tetrahedral cell is represented diagrammatically in figure 2. 

4 

P ( A T ) ~  = [ W ( ~ i y i ~ i ) A ~ i ]  
is1 

where zi, yi, z i ,  etc. are the coordinates of the same volume element AT referred, 
respectively, to the four corners of the tetrahedron A ,  B, C, and D. Substituting 
from equation 1 and integrating over the space in order to obtain the relative 
number of configurations when the chains meet in the same volume element lo- 
cated any  place: 

* The derivation given here is a simplification of the more rigorous treatment by Flory 
and Rehner ( 6 ,  7) .  
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It can be shown from the geometry of the tetrahedron that 
4 

T: = 4d + 4X2(a2 + 2 / a ) / 3  
i-1 

where a is the radial distance of P from the center 0 of the tetrahedron, h is the 
distance from 0 to one of the corners of the undeformed tetrahedron, and a is 
the relative elongation of the tetrahedron resulting from deformation of the 
piece of rubber without change in volume. The average tetrahedron is assumed 

A 

c 
FIG. 2.  Unit tetrahedral “cell” surrounding the central junction P 

to be deformed in proportion to the changes in macroscopic dimensions. Sub- 
stituting in equation 11: 

m 

P = (4pl2/7r5) / exp [-4p2az - 4$h2(a2 + 2/a)/31a2da (12) 
0 

The relative configurational probability for the stretched and normal states is 
obtained by dividing P(a)  by P(1) .  Dividing equation 12 by its value for 
a: = 1, the relative configurational probability of the stretched rubber becomes 

P ( a ) / P ( l )  = exp [-4p2X2(aZ + 2/a - 3) /3]  (13) 

The distance X from the center to a corner of the undeformed tetrahedron may be 
taken equal to the root mean square chain displacement length (T )  which, 
according to equation 1, is equal to 2/3/2p2. Then, taking the logarithm of 
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equation 13 and multiplying by Boltzmann’s constant, the entropy of deforma- 
tion becomes 

AS = -2k(a2 + 2/. - 3) 

for the tetrahedral cell. Since each cell contains four chains, multiplication by 
v / 4  should give the entropy change for the network as a whole. The result is 
identical with Wall’s equation (equation 7), from which the elasticity equations 
(8 and 9) are derived by standard procedures of thermodynamics. 

IV. COMPARISON O F  THE THEORY WITH EXPERIMENTAL RESULTS 

In  the preceding section i t  has been shown that the various statistical-mechani- 
cal treatments of rubber elasticity agree on the form of the force-elongation 
relationship for vulcanized rubber as represented by equation 10. Isothermal 
stressstrain curves for rubber (1, 16, 26,36), synthetic rubber (31), and rubber- 
like polymers (29) are reasonably well reproduced by this function a t  elongations 
preceding the onset of crystallization. The experimentally determined contribu- 
tion to  the retractive force of the change in heat content on stretching is very 
small compared with the total tension. This term, which has been neglected 
in the above theory, does not alter the force-elongation curve significantly 
below the region of crystallization (1, 36). Treloar has shown that measure- 
ments on natural rubber in compression (a < 1) are in excellent agreement with 
equation 10. 

It is significant that the form of the dependence on a (i.e.,  CY)) is unaffected 
by the degree of cross-linking. Stress-strain curves for different degrees of 
vulcanization, therefore, should be superimposable by altering the stress scale 
by suitable factors. This prediction finds verification for natural rubber (16) 
and Butyl rubber (10) vulcanizates differing in degree of cure. Hence a single 
quantity, the stress a t  a given elongation, will suffice to characterize the stress- 
strain curve as a function of the degree of vulcanization, except a t  higher elonga- 
tions where crystallization sets in. 

The connection between elastic properties and vulcanizate structure is of 
more far-reaching importance than the exact form of the stress-strain curve. 
Wall’s equation (9)’ which is substantiated by Treloar’s modification of Kuhn’s 
treatment and by the method of Flory and Rehner, furnishes an explicit expres- 
sion for the constant of proportionality between p(a)  and the absolute tension, 
This proportionality constant contains the number of chains, v, which for an 
ideal network formed from indefinitely long primary molecules must equal twice 
the number of cross-linkages. Thus, the tension a t  any given elongation is 
predicted to be proportional to the degree of cross-linking of the molecules. 

The degree of cross-linking in a vulcanizate is not easily determined directly. 
Prior to a recent investigation (10) of the physical properties and structure of 
Butyl rubber, no comparison between the tension at a given elongation and 
the independently estimated degree of cross-linking in a vulcanized rubber were 
available. Butyl rubber, a copolymer of isobutylene with a small percentage 
of a diolefin, provides an ideal case for such a test, inasmuch as the cross-linking 
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capacity can be controlled through the diolefin content of the polymer. The 
concentration of cross-linkages formed in the vulcanization (fixed recipe) of 
Butyl polymers of a given diolefin content was determined as follows: Raw 
polymers were separated by fractionation into a series of samples of compara- 
tively narrow molecular weight range, each of which possessed the same percent- 
age of unsaturated (diolefin) units and, hence, the same cross-linking capacity. 
Each of these was compounded and cured under standardized conditions; thus 
were produced in each sample the same number of cross-linkages per unit amount 
of polymer. The vulcanixates were extracted with cyclohexane a t  room tem- 
perature to  remove soluble constituents. These are negligible for fractions of 
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FIG. 3. Stress-strain curves for several pure gum vulcanizates from fractionated Butyl 

rubber polymers. Molecular weights are indicated. The calculated curve represents 
q(a) as given by equation 10. 

high molecular weight, where each molecule on the average enters into a number 
of cross-linkages. As the molecular weight is decreased the percentage of 
%01,~ eventually increases rapidly, reaching 100 per cent a t  the “gel point” 
or critical molecular weight M’ for incipient insolubility. This critical molecu- 
lar weight was estimated by an extrapolation of the percentage of sol plotted 
against molecular weight of the fraction. 

From the theory of random cross-linking (3, 4, 34) i t  is known that for mole- 
cules of uniform length incipient gelation occurs when the number of cross- 
linkages equals half the number of initial molecules. Hence, the concentration 
of cross-linkages in moles per gram is equal to 1/2M’ throughout the entire 
series of vulcanixates from polymers of the same cross-linking capacity. Recall- 
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ing that in a network formed from indefinitely long molecules the number of 
chains is twice the number of cross-linkages, it is evident that M ,  equals M’, 
the critical molecular weight for incipient gelation a t  fixed cross-linking capacity. 

Several stress-strain curves for Butyl rubber vulcanizates prepared from 
fractionated samples differing in molecular weight and in unsaturation are shown 
in figure 3. The values for M,, estimated as outlined above, are 35,000 and 
20,000, respectively, for the vulcanizates from the low and high unsaturation 
samples. The tensions a t  300 per cent elongation for the high-molecular-weight 
rubbers, 108 and 134 pounds per square inch, respectively, are greater than the 
values, 38 and 66 pounds per square inch, calculated from the M,’s using equa- 
tion 9’. In  addition to  the discrepancy in magnitudes, the change in ((modulus” 
with the degree of cross-linking is less than a direct proportionality predicted 
by theory. Furthermore, the dependence on molecular weight is rather large. 

Correlation between the above theory and experimental results on the stress- 
strain properties of rubber and rubber-like materials may be summarized as 
follows: The statistical theory of rubber elasticity predicts a form for the stress- 
strain curve which is in good agreement with experiment. The effect of change 
in heat content with elongation is small. On the other hand, the magnitude 
of the observed tension a t  a given elongation is somewhat larger than the above 
theory predicts, a t  least in the case of Butyl rubber. The tension varies less 
rapidly with the concentration of cross-linkages than the predicted direct pro- 
portionality. The large observed dependence on the initial molecular weight 
of the unvulcanized polymer is nowhere taken into account in the above theory. 
Further refinements of the theory discussed in the next section provide explana- 
tions for these deviations. 

V. SETWORK DEFECTS: THE INFLUENCE OF MOLECULAR WEIGHT ON ELASTIC 

PROPERTIES 

The various derivations of the basic equations 9 and 9’stem from the same 
physical concepts of network structure. In  attempting refinements which will 
remove the discrepancies between theory and experiment pointed out above, 
it will be necessary therefore to reconsider this structure in greater detail. 

1. Network entanglements 
The fact that the elastic force of retraction in Butyl rubber vulcanizates 

exceeds the value calculated from equation 9, in which v / 2  is identified as the 
number of chemical cross-linkages, suggests that types of chain interactions other 
than primary valence attachments between chains are to  be reckoned with. 
Several possibilities require consideration. 

Attachments between chains due to  van der Waals forces have been postulated 
as a source of cross-linkages in rubber-like materials. There is no doubt as to  the 
existence of such forces between polymer molecules. The question of concern 
here is the permanence with which these forces may unite neighboring chains. 
In  order for such an attachment to function as a network cross-linkage, obviously 
it must endure a t  least over the interval of the elasticity measurement. On the 
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other hand, the existence of the rubbery state in any high polymer predicates 
a high degree of internal mobility which will allow elements of the chains to slip 
past one another during deformation. van der Waals attractions between chains 
must be small in order for the material to be rubber-like. 

In  harmony with this deduction rubber-like materials usually possess non- 
polar (hydrocarbon) chains or, if they contain strong polar groups, rubber-like 
character is exhibited only a t  elevated temperatures or in the presence of a 
solvent or plasticizing substance capable of satisfying the forces of the polar 
groups. The probable existence of occasional strong polar, or possibly ionic, 
interchain bonds in certain rubbery materials cannot be denied, e.g., in aqueous 
protein gels and possibly to a very limited extent in raw, unmasticated natural 
rubber containing traces of polar substituents (30). The occurrence of a signi- 
ficant number of such bonds in vulcanized natural rubber or in hydrocarbon 
synthetic rubbers is exceedingly unlikely in view of their non-polar nature and 
the consequent weak van der Waals forces between chains. If such bonds 
contributed to the elastic properties, their number should decrease with tempera- 

%? 
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of 

FIG. 4. Entanglement of chains within the network structure 

ture and the elastic retractive force should show a corresponding diminution, 
which is contrary to observation. Furthermore, the correlation of swelling 
behavior of Butyl vulcanizates with elastic properties (cf. sep.) demonstrates 
that about as many cross-linkages are operative in the presence of solvent as 
in its absence. van der Waals bonds would be expected to  be eliminated, or at 
least diminished in number, in the presence of a solvent. 

It has been suggested (12) that long chains, merely owing to  their irregular 
configurations, become entangled with one another to the extent that a molecule 
is unable to extricate itself from its neighbors. Two arguments, one theoretical 
and the other based on direct experiments, can be leveled against the view that 
these entanglements of linear (non-network) molecules are equivalent in their 
contribution to  elasticity to permanent, OP primary valence, cross-linkages. 
Investigations of electrical (11) and viscous (2, 21) properties of polymers in the 
rubber-like or liquid state reveal that within each chain small elements, or seg- 
ments, composed of perhaps ten or twenty chain atoms are constantly rear- 
ranging their positions a t  a rapid rate under the influence of thermal agitation. 
Successive random rearrangements of these segments lead to  diffusion not only 
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of the segments but of the molecule as a whole from one configuration and posi- 
tion to  another. Hence, a molecule does not maintain fixed relationships with 
respect to  its neighbors. Although entanglement of linear molecules is a factor 
contributing to resistance to flow (high viscosity) and to  a low rate of solution, 
it should not be expected to eliminate plastic flow or to  affect equilibrium solu- 
bility. These contentions are confirmed by experimental results : All linear 
polymers regardless of molecular weight display the properties of unvulcanized 
rubber above their brittle point temperatures, i.e., they are soluble in suitable 
solvents and under stress they undergo plastic flow a t  a non-diminishing rate. 

The situation is otherwise if there exists a primary valence network structure. 
Here entanglements of chains may lead to restraints which are equivalent to 
additional chemical cross bonds in their contribution to network properties. 
Consider, for example, two chains, one looped about the other, such as are 
shown in figure 4. While the chains AB and CD are not bound together a t  
fixed points as in a chemical cross-linkage, they nevertheless are permanently 
prevented from crossing each other. The configurations available to each chain 

FIG. 5.  Intramolecular cross-linking 

are limited by interference with the other. This type of restraint, which will 
be called a network entanglement, is of a permanent nature; i t  cannot be cir- 
cumvented without disrupting a portion of the primary valence network. One 
of these entanglements may not be quantitatively equivalent to a chemical cross 
bond in its contribution to  elastic properties. However, a number of them along 
each chain may raise the effective number of cross-linkages appreciably above 
the actual number. 

It should be reemphasized that these network entanglements would offer no 
permanent barriers to  chain configuration were i t  not for the chemical cross 
bonds which are responsible for the primary valence network structure. Their 
existence as permanent features of the structure is dependent upon the presence 
of primary valence cross-linkages. 

2. Intramolecular cross-linkages 
Occasionally two parts of the same molecule may become cross-linked, thus 

If there are no other intervening cross- forming a loop as shown in figure 5.  
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linkages with other chains along the loop, then configurations of the loop will be 
unaffected by deformations. This portion of the structure can contribute no 
reaction to deformation. The entire portion between the cross-linkages A and 
C will act as a single chain, and the cross-linkage B is wasted. Cross-linkages 
of this type should be deducted from the total number in obtaining the number of 
effective cross-linkages, Estimates of the number of such intramolecular cross- 
linkages for flexible chains of random configuration indicate that they con- 
stitute only a few per cent of the total. Their further consideration is scarcely 
warranted a t  the present time. 

3. Terminal chains: the efect of initial molecular weight 
Previous treatments (7, 14, 19, 20,35, 37) of rubber elasticity have disregarded 

the influence on network structure and properties of the molecular weight of the 
initial rubber molecules from which the network is formed by vulcanization. 
In  other words, the molecules were assumed to be infinitely long. Experiments 
already have been quoted which emphasize the marked dependence of elastic 
properties on initial molecular weight of the raw rubber. These are supported 

A *p$ 8 G 

(a) (b) 
FIG. 6. The effect of ends of molecules on network structure: 0 indicates a cross-linkage, 

0 the terminus of a molecule, and -+ signifies continuation of the network structure. 

by widespread experience in rubber technology. The reason for this dependence 
is found in the fact that each end of an initial molecule contributes a flaw to the 
final network structure. The portion of a molecule from one end to its first 
cross-linkage along its length, as depicted in figure 6a, contributes nothing to the 
response of the network to  deformation. The chain AB is always free to  assume 
any configuration whatever, owing to the freedom of the end A. Similarly, 
attachment of the network a t  the point B in figure 6b, to a molecule such as DE 
which is bound to the network a t  no other point produces no increase in the 
effective number of chains. Not only are the two chains DB and BE of molecule 
DE inactive, but the cross-linkage a t  B is not a point of constraint on the chain 
AC. Hence, the portion of the network from A to C is to be considered as a 
single chain, as if the cross-linkage a t  B were not present. 

This discussion of imperfections in networks of finite chains might be extended 
to  more complex situations. However, the above should be sufficient to  demon- 
strate qualitatively the manner in which finite molecule length will affect the 
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network structure. Quantitative derivation of the effect of molecule length OD 

network properties can best be accomplished by assuming a different approach. 
M7e consider the process of network formation by successive cross-linking of 

molecules. Let it be supposed that cross-linking is allowed to occur only between 
molecules, or cross-linked combinations of molecules, which have not been 
connected directly or indirectly by previously introduced cross-linkages. When 
there are a total of N - 1 cross-linkages connecting N primary molecules “inter- 
m~lecularly,”~ all molecules will be bound to a single ramified structure. Before 
allowing the cross-linking process to continue further, let us consider the proper- 
ties of the macrostructure developed a t  this stage. It would be incorrect to call 
i t  a network, inasmuch as it contains no net-like structure, i.e., it possesses no 
circuitous connections within its structure. Because of this fact one portion of 
the structure can be shifted to a new position or configuration without affecting 
permanently the configurations of other parts. So far as their average con- 
figurations (as apart from their positions in space) are concerned, the various ele- 
ments of the structure are independent of one another. Likewise, macroscopic 
deformation does not impose permanent restraints on the configurations of 
component portions of the structure. This somewhat hypothetical structure 
should be expected to  display a static modulus of elasticity equal to zero. 

Closed circuits 
of interconnected molecules will be produced, and the structure can then properly 
be referred to as a network. It becomes apparent that it is these circuitous 
paths in the network which are effective in transmitting the effects of changes 
of configuration of one part of the structure to  another part. Macroscopic 
deformation can no longer occur without a change in internal configuration which 
cannot be dissipated through chain rearrangements, barring primary valence 
rupture. A little consideration will show that for each additional network cross- 
linkage one new closed circuit, and two active network chains, are formed. (It 
will be recalled that the number of chains in an ideal network formed from 
“infinitely” long molecules is twice the number of cross-linkages.) 

In  the course of the actual formation of the network, intermolecular and 
intramolecular cross-linking are not sharply differentiated. Nevertheless, the 
number of circuitous paths in the network, exclusive of non-network, or sol 
constituents, necessarily will be equal a t  any stage of the process to  the total 
number of cross-linkages, v0/2,  in the network minus the number, N - 1, of cross- 
linkages required to combine the primary molecules into a single continuous 
structure without intraconnecting two parts of the structure to form closed 
circuits. Hence, the total number of circuitous paths in the network, or, alter- 
natively, the total number of “intrastructural” cross-linkages, will be 

Additional cross-linking necessarily will be “intramolecular.” 

v / 2  = v0/2 - n; 
The term “intermolecular” cross-linkages is used in this and the succeeding paragraph 

t o  refer t o  cross links connecting previously separate molecular species. Each of these may 
be a cross-linked combination of “molecules” in the restricted sense of primary linear rubber 
molecules, as employed elsewhere in this paper. 
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wherein N - 1 is replaced by N .  The effective number of chains will be given 
by twice this quantity, or 

Y = Y O ( 1  - 2N/Yo) 
= Y O ( 1  - 2M,/M)  

By introducing this expression into equation 9 or 9‘, a revised relationship 
between elastic retractive force and network properties is obtained which takes 
into account the effects of finite length of the initial molecules. This equation 
may be written 

7 = (RTvo/V)(l  - 2M,/M)(p(cY) 

Before discussing this equation further, two aspects of its application should 
be clarified. In  the first place the manner in which the occurrence of network 
entanglements such as have been discussed above will require modification of 
equation 14 must be considered. Inasmuch as entanglements affect only the 
active chains of the network, and not the terminal inactive chains such as AB in 
figure 6a, their effect to  a first approximation should be proportional to the 
number Y of active chains and not to  Y O .  It will be necessary, therefore, to in- 
crease Y in equation 13 by a factor g. This factor probably will depend on M, 
and perhaps on the character of the vulcanization (cf. seq.). The modified 
equation for the tension becomes 

(149 7 = (RTgvo/V)(l - 2Mc/M)cp(cY) 

It is important to note that the factor which introduces the correction for the 
molecular weight M of the primary rubber molecules is unaffected; M ,  refers 
to the average molecular weight between primary valence cross-linkages, un- 
modified by entanglements. 

Secondly, the above method for computing the number of closed circuits in 
the network requires revision when the average number of cross-linkages at- 
tached to each molecule is small. Here an appreciable proportion of the material 
consists of a sol fraction which is unattached to  the network structure. The 
proportion of sol is determined (3,  4) by the “Cross-linking index’’ y, which for 
primary molecules of uniform length is equal to vo/N, Le., to  twice the ratio 
of cross-linkages to primary molecules. Incipient network formation” occurs 
at y = 1 .  As the number of cross-linkages is increased, the proportion of gel 
(network) increases rapidly toward an asymptotic 100 per cent. It is only the 
gel fraction which is responsible for elasticity. Hence, in employing equation 
13, YO and N should refer exclusively to  the gel fraction. Equations have been 
derived previously (4)  for obtaining the cross-linking index, y”,  for the gel and 
the percentage of gel from the cross-linking index, 7, of the material as a whole. 
YO and N for the gel alone can then be computed and the revised expression for v 
introduced in place of equation 13. Trial calculations of this sort show that 
above y - 3, where the percentage of sol is small, no appreciable error results if 
vo and N are allowed to refer to the total material without distinguishing sol 

1 0  For a system of molecules of non-uniform length, Stockmayer (34) has shown that  y 
should be taken as the weight average number of points of cross-linkages per molecule. 

~ 
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from gel. Hence, so long as M is at  least three times M,, the second factor in 
equations 14 and 14’ requires no correction for the existence of a small fraction 
of inactive sol. 

4. Comparison of revised equations with experimental results 
In  figure 7 the force of retraction a t  300 per cent elongation (a = 4) for a 

series of pure gum Butyl rubbers (10) vulcanized to the same degree of cross- 
linking (constant M,) is plotted against the reciprocal of the molecular weight 

FIG. 7. Relationship between modulus and swelling. Tension (“modulus”) a t  300 per 
cent elongation for a series of Butyl vulcanizates having the same concentration of cross- 
linkages, plotted against the reciprocal of the molecular weight of the polymer before vul- 
canization. 

prior to vulcanization. Fractionated polymers of relatively homogeneous 
molecular weight were used. The plot is observed to be linear, in agreement 
with equations 14 and 14’, over the range M = 114,000 to 730,000. The equa- 
tion of the straight line in pounds per square inch is 

7300% = 127(1 - 77,00O/M) 

The indicated value of M ,  is 38,500, in good agreement with the figure of 35,000 
independently estimated as described earlier in this section. Taking M ,  = 
35,000, the value of g in equation 14 calculated from the above coefficient is 3.3. 
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A similar series for which M ,  was estimated to be 20,000 yielded an intercept 
at about 140 pounds per square inch, corresponding to g = 2.1. 

The results shown in figure 7 furnish excellent confirmation for the second 
factor in equations 14 and 14’ and for the explanation which has been given for 
the influence of molecular weight prior to vulcanization on elastic properties of 
the vulcanizate. The effects of entanglements in augmenting the elastic tension 
appear to be rather large. As the degree of cross-linking is increased, and M ,  
decreases correspondingly, the entanglement coefficient g decreases, presumably 
owing to the diminished number of entanglements per chain as the average 
length of the chains is reduced. 

These rather large g factors may in part be due to a peculiarity of Butyl 
vulcanizates. In  the vulcanization of this rubber there are only a limited 
number of points a t  which cross-linking may occur,-namely, a t  the diolefin 
units which are present only in relatively very small number. Furthermore, 
the process probably is exhaustive; all diolefin units either enter into cross- 
linkages, or are permanently lost for this purpose owing to side reactions in the 
sulfur vulcanization process (10). In order for the rarely occurring unsaturated 
units to meet in juxtaposition, some extreme configurations probably are re- 
quired. In these the degree of entanglement may be much greater than would 
occur in a more highly unsaturated rubber in which vulcanization is possible 
a t  almost any point where two chains meet. 

VI. THE RELATIONSHIP BETWEEN SWELLING CAPACITY O F  RUBBER VULCANIZATES 
AND ELASTIC PROPERTIES 

I. Theory 
In contrast to plastic raw rubber, vulcanized rubber swells without dissolving 

when placed in a solvent. This swelling process continues until an equilibrium 
state is reached, a t  which the volume of the swollen gel may exceed the initial 
volume of dry rubber five- to  ten-fold (33, 38). Swelling of the rubber involves 
a distortion of the network structure not unlike that accompanying stretching, 
except that swelling is isotropic in three dimensions. Swelling equilibrium 
represents a balance between two opposing tendencies: the ordinary gain in 
entropy resulting from mixing of the two substances, and the decrease in entropy 
due to distortion (expansion) of the network. Since the forces associated with 
the latter change originate from the same source as the elastic retractive force, 
it is not surprising that elastic properties and swelling capacity are closely related 

A detailed analysis of the thermodynamics of swelling has been carried out by 
Flory and Rehner (6 ,  8), employing the tetrahedral model for network structure 
previously discussed. Here a simpler treatment parallelling the Kuhn-Treloar 
procedure for elastic deformation will be given. 

The partial molal free energy of dilution of polymer with solvent has been 
shown by Huggins (17) and the writer (5) to be given by 

(22, 33). 

AP,,l = RTPn (1 - VO) f v2 f P V ~ I  (15) 
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where 212 is the volume fraction of polymer and 1.1 is a parameter which contains 
a heat of mixing term (temperature dependent) and an empirical constant the 
origins of which are not altogether clear (9). For present purposes it will suffice 
to consider ,U as a parameter characteristic of any given liquid pair (18),-solvent 
and polymer. 

The expansion of the network which accompanies absorption of solvent 
produces a decrease in configurational entropy of the network, an expression 
for which can be derived by a procedure paralleling the derivation of equation 7 
for the change in entropy on stretching. The relative volume increase (ratio of 
volume of swollen gel to volume of dry rubber) is equal to l / v z .  For isotropic 
slTelling, each linear dimension will increase by the factor l /~:’~. Following the 
Kuhn-Wall-Treloar procedure, we again assume that the relative positions of 
the network junctions change in proportion to the macroscopic dimensions. 
By analogy with equation l’, the distribution of chain displacement lengths in 
the swollen “gel” is expressed by 

W’r(r) dr = (4P’/d’’) exp ( -p2~2u~/3)u2r2dr (1”) 

where x2 + y2 + z2 has been replaced by r2. 
tion 6, the configurational entropy of the swollen network becomes 

Substituting vz = vW:’ dr in equa- 

m 
2 2 2 / 3  8 = ( 4 k ~ p ~ / ~ ’ ’ ~ )  [exp ( - p  T v2 ) ] [ A  - p z ~ ’ ] v Z  r’dr 

Integrating and subtracting S for v2 = 1, the network entropy change due to  
swelling is given by the equation 

AS,  = -(3kv/2)(1/~;’~ - 1) (16) 
Aside from whatever heat of interaction between solvent and polymer may 

accompany the absorption of solvent (and this has already been included in p 

of equation 15), the expansion of the network involves no change in internal 
energy; it is purely a configurational change. Hence, the free energy of expan- 
sion of the network is given by the alternate expressions 

AF,  = ( 3 k T ~ / 2 ) ( l / u i ’ ~  - 1) 
= (3kTv/2) { [Zv + ~ ) / Z V ] ” ~  - 1 ] (17) 

where IJZ has been replaced by its equivalent Zv/(Zv + n), where n is the number 
of solvent molecules, v is the number of chains, and Z is the ratio of the average 
size (volume) of a chain to the size of a molecule of solvent. Differentiating 
equation 17 with respect to  n, the contribution to the partial molal free energy 
due to  the reaction of the network to swelling is found to be 

AF,,, = (RT/Z)[Zv/(Zv + YL)]’ ’~  = R T v ~ ‘ ~ / Z  

Replacing 2 by M,/pVl, where V l  is the molar volume of the solvent and p is the 
density of the undiluted rubber: 

AFe,1 = ( R T ~ V ~ / M , ) V : ’ ~  (18) 
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The partial molal free energy change, due both to mixing of the chains with 
solvent and to  expansion of the network, is given by 

AFl AF,J + AFepl 
= RT[ln (1 - v2) + 212 + pvi + (PV~/M,)V:” (19) 

Although this equation has other applications (S), we shall be concerned here 
only with equilibrium swelling, which is so closely related to elastic properties. 
At equilibrium with excess pure solvent AFl = 0. 

(20) 

From equation 19 

M ,  = --pVlv:”/[ln (1 - v2)  + v2 + pv9 

where v2 now represents the volume fraction at swelling equilibrium. Hence, 
given the value of the parameter p for a given solvent-polymer pair i t  is possible 
to  calculate the average molecular weight per chain, or the effective concentra- 
tion of cross-linkages, from the equilibrium swelling volume. For sufficiently 
large degrees of swelling (small v2) the quantity in brackets in equation 20 may be 
approximated by the first term in its series expansion, d(l - 2p)/2, giving 

(21) 

(22) 

M ,  E 2Pvl/v:/3(1 - 2p) 

v2 = [ 2 P v 1 / ~ c ( 1  - 2p)13/6 

or 

Hence the swelling volume ratio, l /v2,  is proportional to the three-fifths power 
of the molecular weight per chain. 

Substituting equation 20 in equation 9’ to obtain the relationship between 
tension in stretched rubber and equilibrium swelling 

7 = - [ ~ ~ p ( a ) / ~ ~ v : ’ ~ ] [ l n  (1 - v2) + v2 + pv3 (23) 

s RT+)(I - 2p)v;/3/2v1 (24) 

or 

According to  this relationship the tension a t  a given elongation, or “modulus,” 
should be approximately inversely proportional t o  the five-thirds power of the 
swelling volume ratio in a given solvent. 

2. Comparison with experiment 
Experimental results on Butyl rubber pure gum vulcanizates are in good agree- 

ment with this relationship. This is shown in figure 8, where the log of the 
“modulus” a t  300 per cent elongation (a = 4) is plotted against the log of the 
swelling volume ratio in cyclohexane a t  25°C. The points represent rubbers 
differing both in initial molecular weight and in degree of cross-linking. The 
straight line in figure 8, drawn with the theoretical slope of -5/3, is matched 
by the points within experimental error. Taking V1 = 110 cc., the position of 
this line yields for p the reasonable value of 0.3 (18) for solutions of Butyl poly- 
mers in cyclohexane. 

The success of the theory in relating swelling to elastic modulus shows that the 
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same network cross-linkage and entanglements are operative both in swelling 
and in stretching. If the excess in the modulus over that which would be 
calculated from the number of primary valence cross-linkages has been cor- 
rectly attributed to  entanglements, these same entanglements produce an 
equivalent reaction to expansion of the network by a solvent. Similarly, it 
follows from the above correlation that the effect on equilibrium swelling of 
molecular weight prior t o  vulcanization parallels its effect on elastic retractive 
force as previously discussed. In  the equations given above, therefore, the 
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pure gum Butyl vulcanizates. 
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LO G SWELLING VOLUME RATIO 
FIG. 8. Relationship between “modulus” and swelling volume ratio ( l / v ~ )  for various 

0 = low unsaturation series; e = high unsaturation series. 

effective number of chains should be employed. 
tions 17 we have 

For example, in place of equa- 

AF, = ( 3 k ~ g ~ ~ / 2 ) ( 1  - ~ M , / M ) ( [ ( Z ~ V ~  + 7 2 ) / ~ ~ ~ ~ ] ~ ~ ~  - I }  (179 

and in subsequent equations M ,  should be replaced by f M , / g ( l  - 2 M c / M ) .  
The equation for equilibrium swelling becomes 

v2 = [2pv lg( i  - ~ M , / M ) / M , ( ~  - 2 4 1 ~ ~ ~  (229 

If secondary vaIence cross-linkages between chains were to  contribute to the 
modulus in deformation, these bonds would be expected to  dissociate in the 
presence of a solvent and the above correlation between swelling equilibrium and 
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modulus would be destroyed. 
the existence of van der Waals cross-linkages in vulcanized rubber. 

These results constitute strong evidence against 

VII. SUMMARY 

Current concepts of the network structure of vulcanized rubber have been 
reviewed and various recent theoretical treatments of the rubber elasticity 
problem have been compared. These are found t o  be in essential agreement; 
they represent merely different methods of analysis of equivalent physical 
concepts. 

The theoretically derived equation for the elastic retractive force in stretched 
rubber consists of two factors, one of which is a function of the relative length 
(a) alone, and the other of which is proportional to the “effective” number of 
cross-linkages in the network and is independent of the deformation. (The 
latter factor also contains the absolute temperature.) Experimental results are 
in agreement with this separability of the elongation and structure factors; i.e., 
the shape of the stress-strain curve (short of the region of crystallization) is 
preserved as the effective number of cross-linkages in the vulcanizate is varied. 

The observed magnitude of the retractive force a t  a given elongation is ap- 
preciably greater than that calculated from the independently estimated number 
of chemical cross-linkages in vulcanizates of Butyl rubber. This discrepancy 
is believed to  be due to entanglements of the chains which increase the effective 
number of cross-linkages. The observed effect of the molecular weight of the 
rubber before vulcanization on elastic properties of the vulcanizate has been 
taken into account by an extension of previous theories. The “flaws” intro- 
duced into the network by the ends of the molecules of rubber diminish the 
effective number of cross-linkages. The theoretically derived factor which 
expresses this dependence on initial molecular weight is in good agreement with 
experiment. 

The swelling capacity of vulcanized rubber in solvents, like the elastic modulus, 
is related to the number of effective cross-linkages. Hence, modulus and swelling 
capacity can be related to one another. The equation expressing this relation- 
ship is amply confirmed by experimental results. From this it is concluded 
that the same cross-linkages are effective in the presence of solvents which 
swell the rubber as are operative in the reaction of the rubber to elastic de- 
formation. 
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